Powrót

Cykle

Fotografia wstępna pokazuje uniwersalny układ czasowy. Może się wydawać, że taki uniwersalny timer to temat banalny i niepraktyczny. W rzeczywistości każdy elektronik wcześniej czy później potrzebuje układu czasowego, za pomocą którego albo uruchomi jakieś inne urządzenie na pewien czas, albo też o pewien czas opóźni jego włączenie.

Fotografia tytułowa pokazuje dwa modele elektronicznej świeczki. W obu pracuje żółta dioda LED, która naśladuje płomień klasycznej świeczki: w nieregularnym rytmie przygasa i rozświetla się. Schematy dwóch wersji elektronicznej świeczki pokazane są na rysunku A oraz rysunku B. Pierwsza, prostsza, przeznaczona jest do zasilania napięciem 7...15 V, druga może też prawidłowo pracować przy znacznie niższych napięciach, zależnie od wartości rezystora R10.

Prostą, ale w pełni użyteczną centralkę alarmową możesz zrealizować według rysunku A i fotografii tytułowej.

Fotografia tytułowa pokazuje dwa modele, a trzeci pokazany jest na fotografii A. Dwa ostatnie działają na podobnej zasadzie: zawierają ultraoszczędny generator pracujący z bardzo małą częstotliwością.

Działanie bariery świetlnej polega na tym, że jej przecięcie, czyli zasłonięcie odbiornika, wywołuje alarm. W najprostszym przypadku bariera mogłaby składać się z żarówki, fotorezystora i jednego tranzystora według rysunku A, ale jej przydatność byłaby wątpliwa, ponieważ reagowałaby na wszelkie oświetlenia tła.

W wykładzie 18 zaczynamy badać i wykorzystywać cyfrowe układy scalone. Zaczynamy od układów najprostszych. Fotografia tytułowa pokazuje cyfrową tęczę świetlną.

Na fotografii wstępnej widzisz model uniwersalnego generatora przebiegów: prostokątnego, trójkątnego i sinusoidalnego. To podstawowe przebiegi, bardzo często wykorzystywane podczas pomiaru różnych urządzeń elektronicznych.

Na fotografii wstępnej pokazany jest ulepszony układ regulatora/stabilizatora temperatury. W wykładzie 8 projektem wstępnym był prosty termostat – regulator temperatury. Zrealizowaliśmy go na kilku tranzystorach i przekonaliśmy się, jak ważną sprawą jest wprowadzenie histerezy, która polepsza działanie układu. Teraz rozumiemy, że zwiększanie histerezy z jednej strony ma dobroczynne skutki, bo likwiduje wpływ zewnętrznych zakłóceń, ale z drugiej strony pogarsza dokładność regulacji. Dlatego zbudujemy ulepszony regulator o znacznie lepszych właściwościach stabilizacyjnych.

Na fotografii wstępnej pokazany jest model selektywnej, pasmowej iluminofonii, reagujący na dźwięki z zakresu około 70...280 Hz. Powodują one zaświecanie dwóch białych diod LED. Układ zawiera skuteczny filtr pasmowy, który nie tylko przepuszcza, ale też około 10-krotnie wzmacnia sygnały w paśmie przepustowym, a silnie tłumi sygnały o innych częstotliwościach.

Na fotografii wstępnej pokazany jest model generatora sygnału sinusoidalnego. Jak wiadomo, matematyczny przebieg sinusoidalny jest przebiegiem podstawowym, elementarnym, „pierwotnym” i w pewnym sensie czystym.